Esakia duality

In mathematics, Esakia duality is the dual equivalence between the category of Heyting algebras and the category of Esakia spaces. Esakia duality provides an order-topological representation of Heyting algebras via Esakia spaces.

Let Esa denote the category of Esakia spaces and Esakia morphisms.

Let H be a Heyting algebra, X denote the set of prime filters of H, and denote set-theoretic inclusion on the prime filters of H. Also, for each a H, let φ(a) = {x X : a x} , and let τ denote the topology on X generated by {φ(a), X − φ(a) : a H}.

Theorem[1]: (X,τ,≤) is an Esakia space, called the Esakia dual of H. Moreover, φ is a Heyting algebra isomorphism from H onto the Heyting algebra of all clopen up-sets of (X,τ,≤). Furthermore, each Esakia space is isomorphic in Esa to the Esakia dual of some Heyting algebra.

This representation of Heyting algebras by means of Esakia spaces is functorial and yields a dual equivalence between the category HA of Heyting algebras and Heyting algebra homomorphisms and the category Esa of Esakia spaces and Esakia morphisms.

Theorem[2]: HA is dually equivalent to Esa.

Notes

  1. ^ Esakia (1974).
  2. ^ Esakia (1974), Esakia (1985), Bezhanishvili (2006).

References

See also